Selection of rich in carotenoid cassava

by

Nagib M.A. Nassar*, Pollyanna C., Rafael D. Melani and Osmindo R. Pires Júnior

University of Brasília, Brasília, Brazil

*Corresponding author, email: nagnassa@rudah.com.br

Abstract

Eight cassava (Manihot esculenta Crantz.) cultivars of which four are indigenous to the Amazon region and an interspecific hybrid were assessed for their carotenoid content. They were propagated and maintained in the living Manihot collection at the University of Brasilia. The cultivar Amarelinha do Amapa which was collected from the state of Amapa, showed a very high content of b-carotene: 27 mg per 100 mg, i.e., more than 50-fold higher compared to other cassava cultivars. This cultivar which also has excellent palatability could be a very important source of b-carotene for cassava breeding.

Key words: Amazon; b-Carotene; Brazil; Domestication; Genetic diversity; Indigenous cultivars; Palatability; Vitamin A

Introduction

Cassava is one of the most important food staples in several tropical regions, including Northern and Northeast Brazil. The crop may sustain several million people around the tropics (FAO 2006) where people are highly dependent on cassava for their daily diet. In some tropical locations, vitamin A deficiency in the local diets has been noted. This lack of vitamin A may cause blindness in humans. The consumption of tuberous roots of b-carotene-rich cultivars may contribute significantly to addressing vitamin A deficiency in such areas. Indigenous clones grown by native people in the Amazon are likely to be sources for b-carotene-rich cultivars. The domestication of cassava by these native people has led to development of cultivars with high b-carotene content, because their flesh color plays an important role in the diets and culture of these inhabitants of the Amazon.

The average daily requirement of b-carotene recommended by the World Health Organization (WHO) is 2.4
to 3.5 mg for adults. Carotenoids are important due to their conversion to vitamin A (e.g., trans-b-carotene) which acts as antioxidant that helps prevent heart attacks or cancer, lower cataract risks and macular disorders, and enhance the immune system (Krinsky, 1994). The aim of our study was therefore to assess the b-carotene content of cassava cultivars from Brazil, and to determine the feasibility of selecting b-carotene-rich clones with excellent palatability.

Material and Methods

The cassava cultivars Amarelinha-1, Amarelinha do Amapa, ICB diploid (ICBD), and Amarelinha do Roraima were used in this research. Their roots were washed in running water and peeled, and then immediately processed.

Ten grams of cassava roots were extracted (5 mL per gram) with acetone. The plant material was re-extracted twice in order to increase yield. The extract was then filtered and vacuum was used when necessary. The acetone filtrate was mixed with light petroleum and distilled water and then poured into a separation funnel. The aqueous fraction was discarded and the organic fraction was submitted to saponification so that the lipids present in the sample could be separated. The organic fraction was stored overnight in 10% KOH solution in methanol (100 mL) at 12 °C. After saponification, the aqueous fraction was discarded and the organic fraction dried with potassium sulfate. The organic fraction was concentrated on steam at 30°C, re-suspended in 1000 μL of ethyl acetate and methanol (v/v; 50/50), and separated by high performance liquid chromatography.

Carotene content was determined by high-performance liquid chromatography (HPLC) carried out in gradient and isocratic modes, either in normal-mode phase or reverse-phase (RP) (Taylor et al., 2006). The analysis of carotenoids was performed using a Shimadzu LC-10A chromatograph with a SPD MXA-10 photodiode array detector and a Rheodyne injection valve with 20-μL loop. The separation was performed in a Vydac 218TP54 C18 column (250 x 4.6 mm ID) with 100% MeOH as mobile phase at a flow of 1 mL/min at 15°C, and the effluent was monitored at 450 mṷ. Peaks were identified by comparison with the standard compound, with regard to retention time, maximum absorption wavelength (λmax; 450 nm), and spectrum profile between 300 and 600 nm, according to Krinsky (1994) and Davies (1976).

The calibration curves for β-carotene and α-carotene were built with a minimum tissue concentration from scratch in triplicate. All curves showed a good correlation between peak area and concentration for β-carotene and α-carotene (R2 = 1.00 and 0.98, respectively). Potential pro-vitamin A was determined by calculating the area under each peak corresponding to the standard curve, expressed in μg/g. The calculation was based on a unit called retinol equivalent (RE), with 1 RE = 6 μg. The relationship of 1 RE equals 12 μg was used as the conversion factor for β-carotene and α-carotene, respectively (Britton, 1995).

Results and Discussion

The indigenous cultivar Amarelinha do Amapa showed a very high content of carotenoids, α-carotene, β-carotene, and both cis- and trans-β-carotene, which is equivalent to 27 mg/100 g (Table 1). This is more than
50-fold higher than the content of other cassava cultivars that we analyzed, namely UnB 101, UnB, 102, UnB 103 and UnB 109. This content of 27 mg per 100 g is 4-fold greater than that of human daily nutritional needs and surpasses many traditional crop sources of b-carotene, such as sweet potato. It was not surprising to find such variability and the high carotenoid content in this indigenous cassava. This crop originated in Brazil and it was domesticated about 4000 years ago (Nassar, 1978). Early cassava cultivars were the result of mutations, recombination, and human selection by Amazon tribes who sought distinct uses leading to this high variability. They practiced different cultures that favored the yellow color.

Indigenous cassava cultivars are potential sources of high carotenoid content and may play an important role in alleviating hunger among poor people in the tropics. Nassar et al. (2005, 2007) reported that some native cassava cultivars from Brazil had high carotenoid content, but that none of them showed a very high level vis-à-vis Amarelinha do Amapa. The adoption of this cultivar by small cassava growers in regions where this crop remains one of the main staples may address the shortage of vitamin A in their diets. Amarelinha do Amapa could also be used for improving carotenoid content in cassava breeding.

References


FAO. 2006. Production Yearbook. Food and Agriculture Organization of the United Nations, Rome, Italy


Table 1. Quantification (mg/g of tissue) of α-carotene, β-carotene, and cis-and trans-β-carotene, in addition to retinol equivalent of different cassava cultivars
<table>
<thead>
<tr>
<th>Roots</th>
<th>α-carotene</th>
<th>cis-β-carotene</th>
<th>trans-β-carotene</th>
<th>Retinol equivalent (RE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amarelinha do Pará</td>
<td>64.16</td>
<td>0.37</td>
<td>0.4</td>
<td>5.528</td>
</tr>
<tr>
<td>Amarelinha do Amapa</td>
<td>70</td>
<td>1.38</td>
<td>0.33</td>
<td>6.118</td>
</tr>
<tr>
<td>ICB 300 diploid</td>
<td>57.29</td>
<td>0.11</td>
<td>0.16</td>
<td>4.82</td>
</tr>
<tr>
<td>Amarelinha do Roraima 1</td>
<td>69.18</td>
<td>0.58</td>
<td>0.65</td>
<td>5.97</td>
</tr>
<tr>
<td>UnB 101</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnB 102</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnB 103</td>
<td>0.06</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnB 109</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnB 110</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Carotenoid chromatographic profile of cassava cultivars: (A) Amarelinha-1, (B), Amarelinha do Pará, (C) 300 ICB diploid, (D) polyploid ICB 300, (E) 530 diploid and (F) 530 polyploid. HPLC was performed with a Vydac 218TP54 RP C18 column of 250 x 4.6 mm ID, 100% MeOH mobile phase, and flow rate of 1 mL/min. Numbers 1, 2 and 3 in each profile refer to α-carotene, cis-β-carotene and trans-β-carotene, respectively.
Figure 2. Cooked root of amarelinha do Amapa